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A Review of Machine Learning
Methods for Medical Image
Segmentation

Recent advances in deep learning and deep convolutional neural networks have
significantly advanced the field of computer vision (CV) and image analysis
and understanding. Complex tasks like classifying and segmenting medical im-
ages and locating and recognizing objects of interest have become much easier.
This advance has the potential to accelerate the discovery and research of a
wide range of CV-based medical applications. In this review, we emphasize the
critical role of machine learning algorithms in enabling efficient and accurate
segmentation in medical imaging. We focus on several key studies on the ap-
plication of machine learning methods to biomedical image segmentation. We
conduct a review of the machine learning literature addressing the complex
visual task of medical image segmentation.

0.1 Introduction

We have seen the importance of medical imaging such as computed tomogra-
phy (CT), magnetic resonance (MR), positron emission tomography (PET),
mammography, ultrasound, X-ray, etc. for the early detection, diagnosis and
other treatment of diseases over the last few decades [1]. Human experts such
as radiologists and physicians have traditionally interpreted medical images in
the clinic. Researchers and physicians have recently begun to benefit from
computer-assisted interventions due to the wide variation in pathology and the
potential for human expert fatigue.

Computer vision (CV) allows computers to process and analyse visual con-
tent such as 2D & 3D images and video. Image segmentation [2, 3], image
registration [4], image fusion [5], image annotation [6], computer-aided diag-
nosis and prognosis [7, 8], lesion/landmark detection [9, 10], and microscopic
imaging analysis [11,12], are a few applications of computer vision in medicine.

Using available technologies, many researchers have proposed various auto-
mated segmentation systems. Previous systems relied on traditional techniques
such as edge detection filters and mathematical methods. Then, for a long time,



machine learning approaches that extract handcrafted features were the domi-
nant technique. The main concern in developing such a system has always been
designing and extracting these features, and the complexity of these approaches
has been seen as a significant limitation on their use. Deep learning approaches
emerged in the 2000s due to advances in hardware and began to demonstrate
their considerable capabilities in image-processing tasks. The promising ca-
pabilities of deep learning approaches have propelled them to the forefront of
image analysis, particularly medical image analysis.

In the realm of applying machine learning to data analysis, meaningful fea-
ture extraction or feature representation is central to the ability to get tasks
done. Traditionally, useful or task-related functions have mostly been designed
by human experts based on their knowledge of the target domains, making it
difficult for non-experts to use machine-learning techniques for their research.
Researchers have previously developed various methods for extracting low-level
and high-level features from images. Vertices, edges, colour intensity, and scale-
invariant features such as SIFT [13] and SURF [14]. In particular, SIFT and
SURF caught the attention of the research community because they are in-
sensitive to image scaling, rotation, pose, and lighting, all of which are major
challenges in CV and medical images. These features are then used to train ma-
chine learning models to perform a specific supervised classification task. There
are numerous ML algorithms [15], and the choice of an algorithm is often influ-
enced by several factors, including the type, size, and complexity of the data
and the task. Support Vector Machines (SVM) [16], Ensemble-based methods
such as Random Forests (RF) [17], Artificial Neural Networks (ANN) [18] and
others are common ML methods.

Deep learning [19], on the other hand, has overcome such challenges by in-
tegrating the feature engineering step into the learning step. That is, instead
of manually extracting features, deep learning only needs a data set, with mi-
nor pre-processing if necessary, and then discovers informative representations
in a self-taught way [20,21]. As a result, the burden of feature engineering
has shifted from the human to the computational side, allowing non-experts in
machine learning to effectively use deep learning for their research and/or ap-
plications, particularly in medical image analysis. CNN (Convolutional Neural
Network) [22] based methods have significantly advanced the field of CV, par-
ticularly in the areas of medical image analysis and classification [23]. These
deep-learning techniques have been used since the 1980s. However, the un-
precedented success of deep learning is largely due to the following factors:
1) advances in high-tech central processing units (CPUs) and graphics pro-
cessing units (GPUs); 2) the availability of a vast amount of data (i.e. Big
Data); and 3) the rapid exploration and development of deep learning algo-
rithms [24-28].CNNs can capture the underlying image representation using



partially connected layers and weight distribution. Many CNN architectures
consist of a small number of convolution layers, followed by activation functions
and pooling layers for image downsampling. The application of filters (kernels)
to the input image repeatedly produces a map of activations (also known as
feature maps) indicating points of interest in the input image.

In this paper, we focus on machine learning and deep learning literature,
developments, and key challenges, with a focus on the computer vision tasks
of medical image segmentation.

0.2 Machine Learning Methods

0.2.1 Linear Regression

Linear regression is one of the most well-known methods in statistics and ma-
chine learning with extensive theoretical research. Despite its simple frame-
work, its concept serves as a basis for more advanced techniques. The model
in linear regression is determined by linear functions whose unknown parame-
ters are estimated from data. Simply put, linear regression is concerned with
determining a linear equation that accurately represents the model. Linear
regression models are often fitted by minimizing the 1-norm (e.g. 2-norm min-
imization is the least squares approach).

Given a dataset {y;, zi1, ..., Tip}i—; of n statistical units, a linear regression
model assumes that the relationship between the variable y and the p-vector of
regression x is linear.This relationship is modeled through a disturbance term
or error variable € - an unobserved random variable that adds "noise” to the
linear relationship between the dependent variable and regressors. Thus the
model takes the form

Yi = Bo+ B + .+ By e =% B+, i=1,..,2 (0.2.1)

where T denotes the transpose so that x! 3 is the inner product between vectors
x; and 5.

0.2.2 Random Forest

Random forests, also known as random decision forests, are an ensemble learn-
ing method for building predictive models by combining decisions from a set of
base models. In order to achieve better prediction results, ensemble methods
use multiple learning models. To arrive at the best possible answer in a ran-
dom forest, the model creates an entire forest of random uncorrelated decision
trees. These methods, known as bootstrap aggregation or bagging, are used
to solve a bias-variance trade-off problem. Bias and variance can be used to
explain learning errors in general. For example, if the bias is high, the test



results will be inaccurate; If the variance is high, the model is only appropri-
ate for certain datasets (e.g. overfitting or instability). Given training dataset
X = {x1,...,z,} with labels Y = {u1,...,y,}, bagging repeatedly and random-
ly samples (K times) the training dataset, and replaces the original training
dataset by fitting binary trees to these samples. Let X and Y be the sampled
dataset, where k = {1, ..., K}, and let T, denote the binary tree trained with
respect to X and Y}. After training, predictions on the test dataset, T, can be
made in two ways:

e Averaging the predictions from all individual trees:
1 _
i= 7 > Ty(z) (0.2.2)

e Taking the majority vote in the case of classification trees.

Averaging the results of individual trees reduces the learning error bias,
and while a single tree’s predictions are very sensitive to its training set, the
mean of individual trees is not sensitive unless the trees are correlated. If
trees are independent of each other, the central limit theorem would ensure
that the variance is reduced. Random Forest uses an algorithm that selects a
random subset of features, splitting each candidate in the process, to reduce the
correlation of trees in a bagged sample [29]. Another benefit of Random Forest
is that it’s easy to use, with only three hyperparameters to set: the number of
trees, the number of features used in a tree, and the sampling rate for bagging.
In addition, the random forest results are accurate and stable; However, the
internal process is a kind of black box, similar to deep learning.

0.2.3 Markov random field (MRF)

The Markov Random Field (MRF) segmentation method is another machine
learning-based segmentation method. MRF is a conditional probabilistic model
in which the probability of a pixel is affected by the probability of its neigh-
bours. MRF is a stochastic process that uses the local features of the im-
ages [30,31]. It is an effective way to connect spatial continuity as a result
of prior context information. As a result, it provides valuable information for
segmentation. Ibragimov and Xing [32] provides an excellent summary of the
MRF': According to MRF formulation, the target image can be represented as
a graph G = {V, E'}, where V is the vertex set and E is the edge set. A vertex
in GG represents a pixel in the images and an edge between two vertices indicate
that the corresponding pixels are neighbours. For each object S in the image,
each vertex is assigned with label 1 when it belongs to S, and with label 0 when
it does not. Then, the label of a voxel is, finally, determined by its similarity
to object S(i.e., probability P?) and similarity to object S of each neighbour.



0.3 Image Segmentation

The process of grouping an image into multiple coherent sub-regions based
on extracted features such as colour or texture attributes and classifying each
sub-region into one of the predefined classes is called image segmentation. Seg-
mentation can also be viewed as a type of image compression, which is a crucial
step in deriving knowledge from images. As a result, segmentation has extensive
applications in precision medicine for the development of a computer-assisted
diagnosis based on radiological images with different modalities such as mag-
netic resonance imaging (MRI), computed tomography (CT) or colonoscopy
images.

Image segmentation is a pixel-by-pixel classification task that divides an im-
age into areas with similar attributes. Medical image segmentation attempts
to locate the region or contour of a body organ or anatomical part in im-
ages. While object detection methods often create a bounding box that defines
the area of interest, segmentation methods create a pixel mask for that area.
Applications include whole heart segmentation [33], lung segmentation [34],
brain tumours [35], skin segmentation [36] and breast tumour segmentation [37].
Like other CV tasks, segmentation can be applied to different medical imag-
ing modalities. The introduction of the Fully Convolutional Neural Network
(FCN) led to a breakthrough in DL-based image segmentation [38]. U-Net and
its extensions have also been successfully applied to a variety of segmentation
tasks in medical imaging, and a detailed review is provided by Litjens et al. [39].

0.4 Datasets

Several datasets that are commonly used for segmentation and are publicly
available are available. There are datasets for brain tumour segmentation
(BRATYS), ischemic stroke lesion segmentation (ISLES), outcome prediction in
mild traumatic brain injury (mTOP), multiple sclerosis segmentation (MSSEG),
neonatal brain segmentation (NeoBrainS12), magnetic resonance -Brain image
segmentation available (MRBrainS). The Lung Image Database Consortium
(LIDC-IDRI) image collection consists of diagnostic and screening chest CT s-
cans with labelled, annotated lesions for lung cancer. There are public datasets
on liver tumour segmentation (LiTS), 3D image reconstruction for algorithm
database comparison (3Dircadb), and liver segmentation (SLIVEROT7). For
prostate segmentation, prostate MR image segmentation (PROMISE12) and
data sets for automated segmentation of prostate structures (ASPS) can be
used. There is also a data set on the knee and cartilage segmentation (SKI10).



0.5 conclusion

Advances in medical image analysis and understanding over the past decade
are considered unprecedented and can be measured in orders of magnitude.
Complex computer vision (CV) tasks such as image classification, location and
segmentation of areas of interest, and detection and tracking of objects in video
streams have become relatively easy. This progress can largely be attributed
to advances at the algorithm level, in particular, the development of methods
based on convolutional neural networks, advances in computing power, and
finally the availability of large amounts of medical images and associated data
in the public domain.

This paper reviewed a few classical machine-learning methodologies, the
progress of machine learning and deep learning research to accomplish the task
of medical image segmentation and a few publically available medical image
segmentation datasets.

Ensuring that interpretability is built into machine learning models from
the ground up is an important challenge for future research. This will help
build trust between physicians and patients and ensure the development of
accurate, explainable DL models for immediate widespread use in the medical
field. Finally, there is an urgent need for ongoing collaboration between medical
and Al experts. This ensures that expert knowledge remains at the heart of the
process to develop accurate, understandable and most importantly applicable
CV techniques that can advance medical care worldwide and advance us.
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